Non-unique way to generalize the Boltzmann-Gibbs distribution

نویسنده

  • Jan Naudts
چکیده

Alternative definitions are given of basic concepts of generalized thermostatistics. In particular, generalizations of Shannon’s entropy, of the Boltzmann-Gibbs distribution, and of relative entropy are considered. Particular choices made in Tsallis’ nonextensive thermostatistics are questioned.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized thermostatistics and mean-field theory

The present paper studies a large class of temperature-dependent probability distributions and shows that entropy and energy can be defined in such a way that these probability distributions are the equilibrium states of a generalized thermostatistics, which is obtained from the standard formalism by deformation of exponential and logarithmic functions. Since this procedure is non-unique, speci...

متن کامل

Deep Generative Stochastic Networks Trainable by Backprop

We introduce a novel training principle for probabilistic models that is an alternative to maximum likelihood. The proposed Generative Stochastic Networks (GSN) framework is based on learning the transition operator of a Markov chain whose stationary distribution estimates the data distribution. The transition distribution of the Markov chain is conditional on the previous state, generally invo...

متن کامل

Boltzmann machines and energy-based models

We review Boltzmann machines and energy-based models. A Boltzmann machine defines a probability distribution over binary-valued patterns. One can learn parameters of a Boltzmann machine via gradient based approaches in a way that log likelihood of data is increased. The gradient and Laplacian of a Boltzmann machine admit beautiful mathematical representations, although computing them is in gene...

متن کامل

Unique Additive Information Measures- Boltzmann-gibbs-shannon, Fisher and Beyond

It is proved that the only additive and isotropic information measure that can depend on the probability distribution and also on its first derivative is a linear combination of the Boltzmann-Gibbs-Shannon and Fisher information measures. Further possibilities are investigated, too.

متن کامل

Generalized Evolutionary Algorithm based on Tsallis Statistics

Generalized evolutionary algorithm based on Tsallis canonical distribution is proposed. The algorithm uses Tsallis generalized canonical distribution to weigh the configurations for ‘selection’ instead of Gibbs-Boltzmann distribution. Our simulation results show that for an appropriate choice of non-extensive index that is offered by Tsallis statistics, evolutionary algorithms based on this gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003